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Nonlinear Studies of Dynamic Stability of Submarines

in the Dive Plane

Fotis A. Papoulias' and Harilaos A. Papadimitriou®

The problem of dynamic stability of submersible vehicles in the dive plane is examined utilizing linear and
nonlinear methods. Local bifurcations are studied with the means of perturbation and linearization tech-
niques. The primary mechanism of loss of stability is identified in the form of generic Hopf bifurcations to
periodic solutions. Stability of the resulting limit cycles is established using center manifold approximations
and integral averaging. Particular emphasis is placed on analyzing the effects of the quadratic drag forces
due to their crucial role on stability of periodic solutions. The methods described in this work could lead to
techniques resulting in enlargement of the submerged operational envelope of a vehicle.

1. Introduction

THE DYNAMIC response of a submersible vehicle operating
at the extremes of its operational envelope is becoming in-
creasingly important in order to enhance vehicle operations.
Traditionally, dynamic stability of motion is studied using
eigenvalue analysis where the equations of motion are lin-
earized around nominal straight-line level flight paths
(Arentzen & Mandel 1960, Clayton & Bishop 1982, Feldman
1987). Under certain simplified assumptions, a simple crite-
rion G, > 0 can be obtained where the stability index G, is
function of the hydrodynamic coefficients in heave and pitch.
Values for the stability index can be computed by

M (Z,+m)

Go=1 Z.M,

(D

This index is analogous to the familiar stability coefficient for
horizontal plane maneuvering and can be thought of as a
high-speed approximation where the effect of the metacentric
restoring moment is minimal. If the value of G, is greater
than zero, the vehicle is dynamically stable. As we point out
in the next section, though, this is only a sufficient and rather
conservative condition for stability. It is not a necessary con-
dition in the sense that G, < 0 indicates instability at infinite
forward speed. It is quite possible that at normal operating
speeds the vehicle might be directionally stable. Further-
more, G, < 0 indicates a divergent loss of stability which is
quite uncommon in the vertical plane. Most modern subma-
rines exhibit a flutter-like instability at high speed, which
cannot be analyzed using the above simplified index. Diver-
gent motions may develop in combined six degrees of freedom
(Papoulias et al 1993) and their occurrence cannot be ana-
lyzed by a single stability index.

In this work we examine the problem of stability of motion
with controls fixed in the vertical plane, with particular em-
phasis on the mechanism of loss of stability of straight-line
motion. We concentrate on open-loop conditions, since the
closed-loop control problem has been previously analyzed
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(Papoulias et al 1995). The surge equation is decoupled from
heave/pitch through a perturbation series approach (Bender
& Orszag 1978). It is shown that loss of stability occurs in the
form of generic bifurcations to periodic solutions (Gucken-
heimer & Holmes 1983). Taylor expansions and center man-
ifold approximations are employed in order to isolate the
main noniinear terms that influence system response after
the initial loss of stability (Hassard & Wan 1978). Integral
averaging is performed in order to combine the nonlinear
terms into a design stability coefficient (Chow & Mallet-Paret
1977). Special attention is paid to the study of the quadratic
drag terms as they constitute some of the main nonlinear
terms of the equations of motion. The difficulty associated
with the nonsmoothness of the absolute value nonlinearities
is dealt with by employing the concept of generalized gradi-
ent (Clarke 1983). This has the advantage of keeping the
linear terms constant, unlike the linear/cubic approximation
typically used in ship roll motion studies (Dalzell 1978),
where the linear damping coefficient is a function of the as-
sumed amplitude of motion.

Vehicle modeling in this work follows standard notation
(Gertler & Hagen 1976, Smith et al 1978), and numerical
results are presented for the DARPA SUBOFF model (Roddy
1990) for which a set of hydrodynamie coefficients and geo-
metric properties is available. Furthermore, the baseline ve-
hicle is marginally stable with controls fixed under normal
operating conditions and can serve as a prime example for
the techniques described in this work. The model has been
experimentally validated for angles of attack on the hull be-
tween +15 deg while the constant coefficient approximation
introduces very little error in time-domain simulations
(Tinker 1978).

Unless otherwise mentioned, all results in this work are
presented in standard dimensionless form with respect to the
vehicle length ¢ = 4.26 m, and nominal forward speed
U = 2.44 m/s. All angular deflections are shown in degrees.

2. Problem formulation

Equations of motion

Assuming that vehicle motion is restricted in the vertical
plane, the mathematical model consists of the coupled non-
linear heave and pitch equations of motion. In a moving co-
ordinate frame fixed at the vehicle’s geometrical center, New-
ton’s equations of motion for a port/starboard symmetric and
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neutrally buoyant vehicle are expressed in dimensionless
form as

mw —uq —zgq® — x6d) = Zyq+Z;,w +Z,g+2Z,w (2)
-Cp f:::e b w — xq)|w —xq |dx + Zsd

Lg +mzgli +wq) -mxgl —uq)=M,q + M, w 3
+Mg+M,w+Cp f:ofc bl)w —xq) |w
- xq | x dx — x5 Wcos0 — zopWsind + M50

where X5 =%; — Xg, Zgr = Zc — 2 and the rest of the symbols
are based on standard notation and are explained in the No-
menclature. Without loss of generality we can assume that zp
=xp =0, so that x;p =xs and zgg = 2. The cross-flow integral
terms in these equations become very important for high-
angle-of-attack maneuvering, where they provide the pri-
mary motion damping. The drag coefficient, Cp,, is assumed
to be constant throughout the vehicle length for simplicity.
This does not affect the qualitative properties of the results
that follow. The vehicle pitch rate is

6=¢q (4)

Dynamic coupling between surge and heave/pitch is present
due to coordinate coupling as a result of the nonzero meta-
centric height. Therefore, pitch and heave motions must be
studied together with surge

mi + mwg — mxgq” + mzeg = X,.q° + X, U + X, wq
+ X2 + X, u? + X, n? + X557 (5)

where we assume that both resistance and propulsive forces
are proportional to the square of the speed or the propeller
revolutions, respectively.
In analyzing controls fixed stability of motion, the case § =
0 is examined first. The steady-state solutions of the equa-
tions are determined by w =¢ =u =8 =g, = 0, where
subscript 0 indicates variable value at steady state. Substi-
tuting these conditions in (2) we get
VA Wqo — CI)AwwO | w0| =0 (6)

2%

where

no:

A, = blx)dx @

tail

is the “waterplane” area. Since Z,, < 0, equation (7) admits
only one solution, namely w, = 0. Equation (3) then yields

x
tan 6, =~ Z—GE (8)
GaB

while (5) is used to determine the nominal forward speed, u,,.

Reduction of order

The linearized surge, heave, and pitch equations of motion
in the vicinity of the nominal point are

(m-X,u +mzgq =2X,,u 9)
m-Z,)w —mxg+2)=(Z,+m)yq +Z,w (10)

I, -M)g +mzgi ~ (mxg+Mw =M,w
+ (M, —mxg) g + M9 an
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where

My = x¢,Wsing,, — z25Weost,, (12)
is the hydrostatic restoring moment coefficient. The charac-
teristic equation of (4), (9), (10), and (11) is obtained as

(<A A + B)(AMA? + BoA2 + Coh + DY) + AM + BA2 =0

(13)
where
Al =m - Xu
B =2X,,

Ay=m—-Z ), -M;) - (Z;+mx)(M, +mxg)

By=-2Z,I,-M;)—(m—-Z,;, )M, -mxg) —(Z,+m)
M, +mxg) - M, (Z;+ mxg)

Co=-Mym-Z,)+ 2, M, —mxg5)- M, Z,+m)

D,=MsZ,

Aj = (mzgy*(m - Z;)

B, = «(mzgV°Z,

It can be seen that the parameter (mz) is responsible for
surge and heave/pitch coupling. For z; = 0, equation (13)
decouples into the surge eigenvalue A = B;/A; and the clas-
sical cubic characteristic equation for the vertical plane. It
should be mentioned that the effect of the forward speed u is
embedded into the definition for the dimensionless vehicle
weight W through

w

W - (14)

1 122

2 p
If we introduce a smallness parameter
e =(mzg)? (15)
we can rewrite (13) in the form

(A+ea)d* +B+efpA>+CA2+DA+E =0 (16)

where in terms of previously defined coefficients
A=-Aa,
B=-A,B, +B,A,
C=-A,C,+ BB,
D=-A.D, +B,C,

E-B,D,
ax=m _Zu}
B:_Zw

Following Bender & Orszag (1978) we expand the solutions of
(16) in a regular perturbation series

A=Ay + Ae + 0D 1n

where A, is an eigenvalue for € = 0 (uncoupled surge or heave/
pitch), A, is the first-order correction due to dynamic cou-
pling, and O(e?) contains second- and higher-order terms in €.
Substituting (17) into (16) we can get

Adlodg + B)
 4AM3 +3BAZ+2CA, + D

A=A £+ 0> (18)

It can be seen that the correction term is very small com-
pared with the uncoupled root as evidenced by the A3 term.
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This is particularly true when A, nears zero, i.e., close to a
bifurcation point. Therefore, loss of stability can be studied
by analyzing the heave/pitch equations decoupled from
surge. The characteristic equation then becomes
A3+ BA% + Coh+ Dy =0 (19)
A plot of the system eigenvalues at nominal speed versus
2. is shown in Fig. 1. The surge eigenvalues are real negative
throughout the range of z, while the heave/pitch eigenval-
ues are real for small values of z. The two larger real heave/
pitch eigenvalues coalesce into a complex conjugate pair
whose real part crosses zero for a certain value of z5. Within
the accuracy of the graph, the eigenvalues A are identical to
those computed by either the coupled or the uncoupled sys-
tem, or the perturbation equations (18).

Critical speed

The parameter value where the real part of the complex
conjugate pair of eigenvalues shown in Fig. 1 crosses zero
defines the point where linear stability is lost. This critical
point can be computed by considering equation (19). Routh’s
criterion applied to this cubic yields A,D, = B,C, which can
be solved for the dimensionless weight
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Fig. 2 Critical speed u, versus x; and zg

where
Coo=2,M,—mxz)-M(Z, +m)
Cy ;=(m — Z,, Xzgpeosd, — xqpsind,)
Dy 1 = Z,,(xp8in0, — 25c0860,)

The value of the critical speed u, can then be evaluated from
(20) and (14). Typical results are presented in Fig. 2, nondi-
mensionalized with respect to nominal vehicle speed 2.44 m/s
and length 4.26 m. Vertical plane motions are stable for for-
ward speeds less than the critical speed. It can be seen that
stability is increasing with increasing z, while x; = 0 is the
most conservative condition for stability. Therefore, a vehicle
which is stable when properly trimmed will remain stable for
off-trim conditions. For comparison, we note that the simple
stability coefficient G, is monotonically decreasing and be-
comes more negative for decreasing x. Thus it would have
predicted unstable motions for the entire range of parame-
ters shown in Fig. 2.

3. Bifurcation analysis

Introduction

In all cases of stability loss of the previous section, one pair
of complex conjugate eigenvalues of the corresponding eigen-
value problem crosses transversally the imaginary axis. A

W= B,Cyp (20) situation like this, in which a certain parameter is varied
TAyD,  -ByCy,y such that the real part of one pair of complex conjugate eigen-
Nomenclature

dummy independent variable a m
a, = steady-state value of a M
o,; = expansion coefficients of z; in
terms of z,, 2,
b(x) = local beam of the hull

g = pitch rate

vehicle mass
pitch moment
M, = derivative of M with respect to a

(R,9) = polar coordinates of z,, z,

(xe, 2¢) = body fixed coordinates of vehicle
center of gravity

center of gravity/center of buoy-
ancy separation, xg — xp

2se = vehicle metacentric height,

=
)
B+

Il

Cp = quadratic drag coefficient T = transformation matrix of x to z zp— Zp
v = regularization parameter 0 = pitch angle z = state variables vector in its nor-
8 = stern plane deflection u = forward speed mal form
€ = perturbation parameter, u,. = critical value of u 24, 25 = critical coordinates of z
£ = (mzg) w = heave velocity z4 = stable coordinate of z
€ = criticality difference, € = u — u, x = state variables vector, x =6, w, q] Z = heave force
I, = vehicle mass moment of inertia X = surge force Z,, = derivative of Z with respect to a
K = nonlinear stability coefficient X, = derivative of X with respect to a ®, = imaginary part of critical pair of
LCB = longitudinal center of buoyancy (xp, zg) = body fixed coordinates of vehicle eigenvalues

LCG = longitudinal center of gravity
A = system eigenvalue
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values of the linearized system matrix crosses zero, results in
the system leaving its steady state in an oscillatory manner.
This loss of stability is called Hopf bifurcation and generally
occurs in either supercritical or subcritical form. In the su-
percritical case, stable limit cycles are generated after the
nominal straight-line motion loses its stability. The ampli-
tudes of these limit cycles are continuously increasing as the
parameter distance from its critical value is increased. For
small values of this criticality distance the resulting limit
cycle is of small amplitude and differs little from the initial
nominal state. In the subcritical case, however, stable limit
cycles are generated before the nominal state loses its stabil-
ity. Therefore, depending on the initial conditions it is possi-
ble to diverge away from the nominal straight-line path and
converge towards a limit cycle even before the nominal mo-
tion loses its stability. This means that in the subcritical
Hopf bifurcation case the domain of attraction of the nominal
state is decreasing and, in fact, it shrinks to zero as the crit-
ical point is approached. Random external disturbances of
sufficient magnitude can throw the vehicle off to an oscilla-
tory steady state even though the nominal state may still
remain stable. After the nominal state becomes unstable, a
discontinuous increase in the magnitude of motions is ob-
served as there exist no simple stable nearby attractors for
the vehicle to converge to. Distinction between these two
qualitatively different types of bifurcation is, therefore, es-
sential in design. The computational procedure requires
higher-order approximations in the equations of motion and
is the subject of this section.

Center manifold expansions

The nonlinear heave/pitch equations of motion (2), (3), and
(4) are written in the form

H =¢q 21
W =a W + @q9q + aq5(xgpcoso + 2;55ind)
(22)
+d,(w,q) +¢, (w,q)
G = Qg W + Aooq + Ays(X;pC0SH + 2;5SINO)
(23)
+d,(w,q) + co(w,q)
where
D, =m-Z,I,-M,)~(mxg+Z,¥mxg+M,)
D, = U, -M,)Z, +(mxg+Z,M,
aD, = I, -M))Xm +Z)+(mxg + Z, )M, - mxg)
a;5D, = —(mxg +Z4)W
as D, = (im-Z, )M, +(mxg+M,;)Z,
95D, = (m=Z,)M,—mxg)+(mxg+ M, Xm+Z)

agaD, = —-(m -Z,; )W

dpwq)D, = (I~ M, +(mxg+ Z,)I,
d,w,q)D, = (m=Z ), +(mxg+M,;)l,

ey(w, @)D, = (I, - M)mzgq® — (mxg + Z)mzgwq
exw, @D, = —(m - Z,;)mzgwq + (mxg + M, )mzcq®

and I, I, are the cross-flow integrals

L,=Cp [ ba)w - xq)lw — xqld

tail

(24)

I,=Cp f::e bx)w - xq) w —xq lx dx (25)

The system of equations (21) through (23) is written in the
compact form
X = Ax + g(x) (26)
where
x=[0,w, ql (27
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is the three state variables vector, and A is the linearized
system matrix evaluated at the nominal point x,. The term
g(x) contains all nonlinear terms of the equations. Hopf bi-
furcation analysis can be performed by isolating the primary
nonlinear term in g(x). Keeping terms up to third order, we
can write

gx) = g% + g¥(x) (28)

Using equations (21) through (25), the various terms in (28)
can be written as

8 =0
g% =, - M, mzeq” — (mxg + Z; Imzgwq + d,)(w,q) (29)
@

83

and

=~(m - Z,; Y)mzgwq + (mxg + M,; Imzgq® + d(w,q)

8" =0
g5’ =dP(w,q) + éala(xGB sinBy — 265C086,)8”  (30)
gy =dPw,q) + %GZS(XGB sinf, — 2e0s8,)0°

Expansion in Taylor series of d,,, d,, requires expansion of the
cross-flow integrals 1,,, I, which require the Taylor series of

&) =EIg (B

This expression can be converted into an analytic function
using Dalzell’s (1978) approximation

5 3583
EIgl :Eic&ugiv

(32)

which is derived by a least-squares fit of an odd series over
some assumed range of &, namely —&_ < & < &_.. This approxi-
mation, which is shown in Fig. 3, has been extensively used
in ship roll motion studies and is very useful for its intended
purpose. However, in the present problem it suffers from
several major drawbacks:

+ It introduces a linear term which depends on the as-
sumed range of motion, and it renders the critical speed
a function of the vehicle motions.

» The cubic term, which is ultimately responsible for the
Hopf bifurcation analysis, is a function of the assumed
range of vehicle motions which cannot be known in ad-
vance.

0.9}
0.8}k
0.7}
0.8}
0.5+
0.4+
0.3
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0 0.2 0.4 0.6 0.8 1

Fig. 3 Graphical representation of Dalzell's approximation of ZIE| versus E/E,.
Solid curve is the exact expression and dotted curve is the approximation (32)
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» As Fig. 3 demonstrates, the slope of the actual curve at
the origin is significantly different than the approxima-
tion, which would make the bifurcation results unreli-
able.

Instead of Dalzell’s approximation, we employ the concept
of generalized gradient (Clarke 1983), which is used in the
study of control systems involving discontinuous or non-
smooth functions. In this way we approximate the gradient of
a non-smooth function at a discontinuity by a map equal to
the convex closure of the limiting gradients near the discon-
tinuity. In our problem we write

AE) = EglEy 1 + 211§ — &) + sign(E)E - 50)2 + fs)(g) (33)

as the Taylor series expansion of A) near &;. The sign func-
tion in (33) can be approximated by

sign(€,) = lim tanh (%> (34)
¥—0 Y
A graphical representation of the approximation (34) is
shown in Fig. 4. The quantity y is a small regularization
parameter and is used for proper normalization of the
results. Using (34), we can approximate f{&) in the vicinity of
& =0by
1

éIéI:G—YP? (35)

Since
Etow—xq (36)

we can express the non-smooth cross-flow integral terms by

I,= % (Eqw® - 3E,w’q + 3Bwg® ~Exq®)  (37)
CI) 3 2 2 3
I, =g (B - 3Equlq + 300" ~Eig’) - (38)
where
= [ xibds (39)

are the moments of the vehicle “waterplane” area.
Using the previous second- and third-order Taylor series
expansions, equation (26) is written in the form

}E =AX + g(2)(x) + g(:%)(x)

0.8} 4

0.8} 1

0.4 1

0.2} b

-1 L : .
-1 -0.5 0 0.5 1

Fig. 4 Graphical representation of sign function and its hyperbolic tangent ap-
proximation (34). Solid curve corresponds to y = 0.1 and dotted curve to y= 0.01
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(40)

If T is the matrix of eigenvectors of A evaluated at the critical
point u = u,, the linear change of coordinates

x=Tz,z=T'x (41)
transforms system (40) into its normal coordinate form
Z =T ATz + T 'g®(Tz) + T 'g*(Tz) (42)

At the Hopf bifurcation point, matrix T~' AT takes the form

0 -, 0
T'AT=| o, 0 0
0 0 p

where o, is the imaginary part of the critical pair of eigen-
values, and the remaining eigenvalue p is negative. For val-
ues of u close to the bifurcation point u,, matrix T-'AT be-
comes

e —w +we) 0
1A
T AT= (wy + 'e) o'e 0
0 0 p+pe

where € denotes the criticality difference
(43)

€e=u—u,
and

o/ = derivative of the real part of the critical eigenvalue
with respect to €

" = derivative of the imaginary part of the critical eigen-
value with respect to €

p’ = derivative of p with respect to e

Due to continuity, the eigenvalue p + p’e remains negative
for small nonzero values of e. Therefore, the coordinate z,
corresponds to a negative eigenvalue and is asymptotically
stable. Center manifold theory predicts that the relationship
between the critical coordinates z,, z, and the stable coordi-
nate z, is at least quadratic order. We can then write z; as

(44)

where the coefficients o, in the quadratic center manifold
expansion (44) need to be determined. By differentiating
equation (44) we obtain

_ 2 2
23 = 001127 + 0152125 + OoaZ5

(45)

We substitute 2, = —wyz, and 2, = 0,2, from equation (42) into
(45), and we obtain

23 = 20001212 + U15(2125 + 2125) + 20009252,

2y = 040027 + 2(0lgp — 041100212y — 00025 (46)
The third equation of (42) is written as
Zy=pzy + [T 'g 2 (T2) 3 5, (47)

where terms up to second order have been kept. If we denote
the elements of T and T~ by

T={m,], T " =In,l (48)
then
d,
T g®(Tz) = | d,
ds
where

dy = 1505625 + lo62125 + (3725) + N15(€3527 + (56212,
) (49)
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- 2 2 2
do = noo(fy527 + €962122 + fa723) + Nog(lss27 + 362122

+ 03425 (50)
dy = ngo(lo2s + loa2120 + £2725) + Naallas2] + 462120
+ €3925) (61

Expression for the coefficients ¢,; are given in Papadimitriou
(1994).
Equation (47) then becomes

25 =pz5+dy (52)
and substituting (44) and (51) into (52) we get
gy = (PO + Ngglos + Nyslss)Z] + (DO + Naylag
+ Ngslae)212e + (PO0s + Naafar + Naglsr)2s (53)
Comparing coefficients of (46) and (53) we get
—polyg + OO0 = Ngelys + Nagfas (54)
—2000l11 — POlys + 20000lu5 = Ngafag + N3alag (55)
—00l12 — POlyy = Nyalay + Naalay (56)

Solution of the system of linear equations (54) through (56)
yields the coefficients in the center manifold expansion (44).

Using the previous Taylor expansions and center manifold
approximations, we can write the reduced two-dimensional
system that describes the center manifold flow of (42) in the
form,

2, = 0ezq — (0 + Wekzy + Fi(24,25) (57)
2y = (0 + Oe)z, + Aez, + Folz,,25) (58)
where
_ 3 2 2 3 2
Fi(z125) = 427 + 22122 +2r132122 +ri4Z2e T P12y
+P192125 + P1325 (59)
\ 3 2 2 3 2
Folz125) =rgy27 + ree212, *2”232122 + rou2s + D212 ‘
+ P222122 t P23?2 (60)
and
ry=ngly +ngts, 1=12, j=1,...,4 (61)

Py = Miofoy + Nabsy, =12, j=123, k=j+4 (62)

If we introduce polar coordinates in the form

21 = Reoso, z, = Rsing (63)

we can use (57) and (58) to produce an equation describing
the rate of change of the radial coordinate R

R = o'eR + P(OR® + Q(0)R? (64)

This equation contains one variable, R, which is slowly vary-
ing in time, and another variable, ¢, which is a fast variable.
Therefore, equation (64) can be averaged over one complete
cycle in ¢ to produce an equation with constant coefficients
and similar stability properties

R =o/eR + KR® + LR? (65)
where
1 2n 1
“2n S Pode - FICATRASTRL St P (66)
1 2n ‘
L=5:J, Qxdo=0 67)
Therefore, the averaged equation (65) becomes
R = oeR = KR® (68)
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Equation (68) admits two steady-state solutions, one at B =
0 which corresponds to the trivial equilibrium solution at
zero, and one at

’

o
— 5, €

Ro=+/-%

(69)
This equilibrium solution corresponds to a periodic solution
or limit cycle in the cartesian coordinates z,, z,. For this limit
cycle to exist, the quantity R, must be a real number. In our
case o is always positive, since the system loses its stability;
i.e., the real part of the critical pair of eigenvalues changes
from negative to positive, for increasing u. Therefore, exis-
tence of these periodic solutions depends on the value of K.
Specifically

* if K < 0, periodic solutions exist for € > 0 or u > u_, and
« if K > 0, periodic solutions exist for e < 0 or u < u,.

The characteristic root of (68) in the vicinity of (69) is
B =-20'¢ (70)
and we can see that

« if periodic solutions exist for u > u, they are stable, and
« if periodic solutions exist for u < u, they are unstable.

The period of these periodic solutions can be estimated as
follows. Equations (57), (58), and (63) produce an equation in
¢ similar to (64)

b= 0, + 0'e + F(Q)R? + GIOR (71)
The averaged form of (71) is
b = 0 + e + MR? (72)

where
1 2n 1
M:—szo F(¢)d¢:§(3f‘11 + ros —7‘12—37'14) (73)

The limit cycle period can be computed by substituting (69)
into (72)

o'K-oaM

2r 2n<
"ok €

== ) +0 ()
Wy + we+MR; ®o
(74)

Results and discussion

Typical results of the nonlinear stability coefficient K are
shown in Figs. 5 and 6. Figure 5 presents a plot of K - y versus
x¢ for z;; = 0.015 and for different values of C,. It should be
emphasized that the use of K - yis more meaningful than the
use of K, since it properly accounts for the use of the regu-
larization parameter y as seen from equations (35) and (68).
Numerical evidence demonstrates that all curves K - yversus
x; converge for y — 0. For practical purposes, values of y
smaller than 0.001 produce identical results. The results of
Fig. 5 demonstrate the profound effect that the quadratic
drag coefficient C;, has on stability of limit cycles. All Hopf
bifurcations are supercritical (K < 0), and they become stron-
ger supercritical as Cp, is increased. It is worth noting that
results for Cj, = 0 produce subcritical behavior, K > 0, which
is clearly incorrect. Thus, neglecting the effects of Cp, would
have produced entirely wrong results in the present problem.
Figure 6 shows a plot of K - y versus x, for C, = 0.5 and
different values of the metacentric height z;. It can be seen
that, the bifurcations become stronger supercritical as initial
stability z is increased.

The bifurcation analysis results are verified by direct nu-
merical simulations shown in Figs. 7 through 9. Figure 7
shows the results of two numerical simulations for two val-
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Fig. 5 K- yversus xg for zg = 0.015 and different values of drag coefficient Cp

ues of nominal speed i, in terms of the vehicle pitch angle 6
(in degrees) versus time (in seconds). The critical value of
speed, u_, is about 0.495 as can be seen from Fig. 2, while the
other parameters in the simulations were Cp = 0.5, 2o =
0.015, and x; = 0. It can be seen that convergence to zero is
ensured for u, < u, and convergence to a limit cycle occurs for
o> u.. This indicates supercritical behavior as shown before.
A selection of time histories is shown in Fig. 8 for a range of
forward speeds and the same parameters as in Fig. 7. The
same initial disturbance, 6 = 5 deg, was introduced at ¢ = 0 for
all simulations. It can be seen that the amplitude of limit
cycles increases as the distance of u from u, is increasing. The
rate of convergence of solutions to their limit cycles is also
increasing, while their period remains essentially constant.
These results are summarized in Fig. 9, where the ampli-
tudes of the numerically computed limit cycles are plotted
versus u, The behavior is clearly supercritical, which agrees
with our findings of the bifurcation analysis.

Bias effects

Loss of stability

Stability analysis of motions at a nonzero angle of attack
can be performed by first introducing some bias into the

steady-state solution and its perturbations. This can be
achieved by maintaining a nonzero dive plane angle. In this
case the steady-state solutions are g, = 0, and w,, 6, are
computed from

Zwo — CpEqwolwgl + Z55 =0 (75)
M, wy + CpEwglwgl — Wlxggeost, + z4s1n,)
+ Mgd=0 (76)

The coefficients E,, E, are computed from (39). In order to
solve (75) we observe that when 3 > 0, then w, < 0

2w =\ 23, = 4CHEZD

wo = ~2C,E, (77)
and when 8 < 0, then w, > 0
-Z,-\/Z3+4C 3
we = pEZs (78)

-2CpE,

The angle 6, can then be computed from equation (76).

Linearization of the equations of motion in the neighbor-
hood of the above equilibrium point produces the linear sys-
tem

-0.2 ' i i
00051 1. | ! :
-0.4 /
] \:\
~0.6 +
" T [ R T~
-a.8 E—
/ \
-1 0.015
/ \
"]
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x10-3

Fig. 6 K-y versus xg for Cp = 0.5 and different vaiues of metacentric height zg
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Fig. 9 Limit cycle amplitudes from results of Fig. 8
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(m-Z,w —(mxg+2,)qg=(Z, - 2CpEqlw, | w

+(Z,+m +2C,E lwyl)g (79
M, +mxgw + U, + M;)g= (M, +2CpE, lw, w
+ (M, — mxg - mzgw, — 2CpE5lw, g
+ Wlx;gsinb, — 24505040 (80)
6=q (1)

where the variables w, 6 are understood as small deviations
from their equilibrium values. Numerical solution of the gen-
eralized eigenvalue problem (79) and (81) yields the critical
speed values where the nominal equilibrium solution be-
comes unstable.

Analysis of Hopf bifurcations

It can be numerically verified that the above calculations
for the new critical speed result in a loss of stability in the
form of Hopf bifurcations, as for the 3 = 0 case. These Hopf
bifurcations can be analyzed using the same general meth-
odology that was developed in the previous section. The non-
linear expansions are like equations (21) to (23) with the
following changes: The substitutions

Z,— 2, - 2CpEuw,
M, > M, +2CpEw,
Z,+m —Z,+m+2CpE w,
M, - mxg > M, - mxg — mzgw, — 2CpEow,

are assumed in the definition of coefficients o, Furthermore,
equation (33) produces second-order contributions due to w,
# 0, as well as a third order. Using (33) we can compute the
second-order expansions of d\2’ and d’ in (29) using

I'2 = CplEqw? — 2E,wq + Exq?) (82)

I? = Cp(E\w” - 2Ewq + Exq®) (83)
These equations are valid for wy > 0 or 8 < 0. For 8 > 0 the
signs of E; must be switched. The third-order expansions I’
and Iff) are the same as in equations (37) and (38). Using
these additional terms, the nonlinear stability coefficient K
can be computed in the same way as in the previous section.
Results and discussion

Typical results for 8 # 0 are shown in Figs. 10 through 15.
Figure 10 shows the equilibrium pitch under 8, (in degrees)
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Fig. 15 Nonlinear stability coefficient K versus xg for Cp = 0.5, z5 = 0.015, and different
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versus x for different values of & from -5 to 5 deg with
increments of 1 deg. Solid curves correspond to positive § and
dashed curves to negative. Figure 11 shows the degree of
stability for the equilibrium points of Fig. 10, while Fig. 12
presents the degree of stability in a three-dimensional view.
It can be seen that positive and negative values of 8 have
almost identical stability characteristics. Furthermore, the
degree of stability becomes more negative as the absolute
value of § is increased, which means that we expect a wider
domain of stability in this case. This is verified by the critical
speed plots shown in Figs. 13 and 14. The critical speed is
minimum for 8 = 0 and it increases monotonically with in-
creasing absolute value of 8. This stabilizing effect of asym-
metry (bias) remains approximately true for the nonlinear
analysis, as demonstrated by the results of Fig. 15. It can be
seen that the nonlinear stability coefficient K becomes more
negative as 8 is decreasing from zero. For increasing §, K
becomes less negative but the difference from the & = 0 cal-
culations appears to be very small. Therefore, limit cycle sta-
bility is not significantly affected by the bias effects that are
induced by small nonzero dive plane angles.

5. Concluding remarks

This work presented a comprehensive nonlinear study of
straight-line stability of motion of submersibles in the dive
plane under open-loop conditions. A systematic perturbation
analysis demonstrated that the effects of surge in heave/pitch
are small and can be neglected. Primary loss of stability was
shown to occur in the form of Hopf bifurcations to periodic
solutions. The critical speed where instability occurs was
computed in terms of metacentric height, longitudinal sepa-
ration of the centers of buoyancy and gravity, and the dive
plane angle. Analysis of the periodic solutions that resulted
from the Hopf bifurcations was accomplished through Taylor
expansions, up to third order, of the equations of motion. A
consistent approximation, utilizing the generalized gradient,
was used to study the nonanalytic quadratic cross-flow inte-
gral drag terms. The main results of this study are summa-
rized as follows:

1. The critical speed of loss of stability is a monotonically
increasing function of both vertical and longitudinal LCG/
LCB separation. This means that a vehicle which is stable
when properly trimmed will remain stable for off-trim con-
ditions.

2. Loss of stability occurs always in the form of supercrit-
ical Hopf bifurcations with the generation of stable limit cy-
cles. It was found that this is mainly due to the stabilizing
effects of the quadratic drag forces.

3. Even though the quadratic drag forces do not influence
the initial loss of stability, they have a significant effect on
post-loss of stability stabilization.

4. The critical speed is minimum for zero dive plane angles,
and is monotonically increasing for nonzero angles. Limit
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cycle stability is not significantly affected by the bias effects
that are induced by small nonzero dive plane angles.

It should be emphasized that the occurrence of supercriti-
cal Hopf bifurcations is an attribute of the open-loop system
only. Under closed-loop control, it is possible to experience
either supercritical or strongly subcritical Hopf bifurcations,
as shown in Papoulias et al (1995). The latter are particularly
severe in practice since self-sustained vehicle oscillations
may be initiated prior to loss of stability, depending on the
level of external excitation or the initial conditions.
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